
ECE 204 Numerical methodsECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Approximating solutions to systems
of 1st-order initial-value problems

Introduction

• In this topic, we will

– Give a description of systems of 1st-order initial-value
problems (IVPs)

– Discuss their solutions, if they can be found

– Describe how operations translate to vector-space
operations of vector addition and scalar multiplication

– Look at converting our 1st-order solvers to solving systems
of 1st-order IVPs

– Go over some examples

Approximating solutions to systems of 1st-order initial-value problems

2

Systems of initial-value problems

• Suppose we have a system of two 1st-order IVPs

– This has a unique solution:

• Problem: this system has no known solution:

Approximating solutions to systems of 1st-order initial-value problems

3

()() () ()
()() () ()

1

1

2

2

y t y t z t

z t z t y t

= − −

= − +

()

()

0 1

0 2

y

z

=

=

() () ()()

() () ()()

cos 2 2sin 2

2cos 2 sin 2

t

t

y t e t t

z t e t t

−

−

= −

= +

()() () ()
()() () ()

1

1

2

2

y t ty t z t

z t z t y t

= − −

= − +

()

()

0 1

0 2

y

z

=

=

Systems of initial-value problems

• Here is another such problem:

• Here is another problem that began a revolution in mathematics:

Approximating solutions to systems of 1st-order initial-value problems

4

() () () () ()
() () () () ()

1

1

0.02 0.1

0.04 0.02

x t x t x t y t

y t y t x t y t

= −

= − +

() () () ()()
() () () ()() ()

() () () () ()

1

1

1

10

28

8

3

x t y t x t

y t x t z t y t

z t x t y t z t

= −

= − −

= −

()

()

0 5233

0 323

x

y

=

=

()

()

()

0 1

0 1

0 1

x

y

z

=

=

=

The Lorenz equations

• This second equation is responsible for the term the butterfly
effect

Approximating solutions to systems of 1st-order initial-value problems

5

Dan Quinn via Wikipedia

Vector-valued functions of a real variable

• We would like to approximate solutions to such systems

– What approach do we use?

• Let’s create a vector-valued function:

– The derivative is as follows:

Approximating solutions to systems of 1st-order initial-value problems

6

()

()

()

()

x t

t y t

z t

=

u

()()

()()
()()
()()

1

1 1

1

x t

t y t

z t

=

u

()

()

()

1

2

3

u t

u t

u t

=

()()
()()
()()

1

1

1

2

1

3

u t

u t

u t

=

Vector-valued functions of a real variable

• We can define such a function:

– In this case, we have

Approximating solutions to systems of 1st-order initial-value problems

7

()

()

()

()

sin

cos 1

sin

t t

t t

t t

+

= −

u

()()

()

()

() ()

1

1 cos

sin

sin cos

t

t t

t t t

+

= −
 +

u

Vector-valued functions of a real variable

• A 3-dimensional vector-valued function of a real variable could
represent:

– The x, y and z coordinates of a drone at time t

– The voltages at three nodes in a circuit at time t

– The temperature readings from three sensors at time t

• You could have fifty sensors, resulting in a 50-dimensional
vector-valued function of a real variable

• In each case, the derivative gives you the instantaneous rate-of-
change of that vector-valued function

– E.g., how fast the drone is moving north, west and vertically up

Approximating solutions to systems of 1st-order initial-value problems

8

Vector-valued functions of a real variable

• For example, you may have a drone flying in a figure eight over an
area:

• The direction of travel is given by:

• The speed is given by

– The speed varies between 5 m/s and 31 m/s

Approximating solutions to systems of 1st-order initial-value problems

9

()

()

()

10sin

10cos 3

100

t

t t

=

u

() ()

()

()1

10cos

30sin 3

0

t

t t

= −

u

() () () ()1 2 2

2
100cos 900sin 3t t t= +u

Approximating movement

• Notice that if we have a position vector u and velocity vector v,

– Then assuming the velocity is constant,
we can estimate the position one time step into the future

Approximating solutions to systems of 1st-order initial-value problems

10

h+u v

u

v

Systems of 1st-order initial-value problems

• Now, can’t we do the same with differential equations?

Approximating solutions to systems of 1st-order initial-value problems

11

() () () () ()
() () () () ()

1

1

0.02 0.1

0.04 0.02

x t x t x t y t

y t y t x t y t

= −

= − +

()

()

0 5233

0 323

x

y

=

=

()
()

()
1

2

u t
t

u t

=

u
() ()

() ()
() ()

1

11

1

2

u t
t

u t

 =

u

()
()

()
1 0

0 0

2 0

5233

323

u t
t

u t

= = =

u u

() ()
() () ()

() () ()
1 1 1 2

2 1 2

0.02 0.1

0.04 0.02

u t u t u t
t

u t u t u t

−
=

− +
u

(),t= f u

Systems of 1st-order initial-value problems

• Now, can’t we do the same with differential equations?

Approximating solutions to systems of 1st-order initial-value problems

12

()() () ()
()() () ()

1

1

2

2

y t ty t z t

z t z t y t

= − −

= − +

()

()

0 1

0 2

y

z

=

=

()
1

0
2

=

u
() ()

() ()

() ()
1 1 2

2 1

2

2

tu t u t
t

u t u t

− −
=

− +
u

(),t= f u

Systems of 1st-order initial-value problems

• Similarly, this system of three initial-value problems can b

Approximating solutions to systems of 1st-order initial-value problems

13

() () () ()()
() () () ()() ()

() () () () ()

1

1

1

10

28

8

3

x t y t x t

y t x t z t y t

z t x t y t z t

= −

= − −

= −

()

()

()

0 1

0 1

0 1

x

y

z

=

=

=

()

()

()

()

1

2

3

u t

t u t

u t

=

u
() ()

() ()
() ()
() ()

1

1

1 1

2

1

3

u t

t u t

u t

=

u

()

1

0 1

1

=

u() ()

() ()()
() ()() ()

() () ()

2 1

1

1 3 2

1 2 3

10

28

8

3

u t u t

t u t u t u t

u t u t u t

 −

= − −

 −

u (),t= f u

Euler’s method

• Let’s see how this works with Euler’s method:

Approximating solutions to systems of 1st-order initial-value problems

14

()() ()()

()

1

0 0

,t t t

t

=

=

u f u

u u

() ()0 0 0 0,t h h t+ +u u f u

()1 ,k k k kh t+ +u u f u

Heun’s method

• Let’s see how this works with Heun’s method:

Approximating solutions to systems of 1st-order initial-value problems

15

()0 ,k kts f u

()1 0,k kt h h + +s f u s

0 1
1

2
k k h+

+
 +

s s
u u

()() ()()

()

1

0 0

,t t t

t

=

=

u f u

u u

4th-order Runge-Kutta method

• Let’s see how this works with the 4th-order Runge-Kutta method:

Approximating solutions to systems of 1st-order initial-value problems

16

()0 ,k kts f u

()1 1
1 02 2

,k kt h h + +s f u s

()1 1
2 12 2

,k kt h h + +s f u s

()3 2,k kt h h + +s f u s

0 1 2 3
1

2 2

2
k k h+

+ + +
 +

s s s s
u u

()() ()()

()

1

0 0

,t t t

t

=

=

u f u

u u

Implementation

• Recall our implementation of Euler’s method:
std::tuple<double *, double *, double *>

euler(std::function<double (double t, double y)> f,

std::pair<double, double> t_rng, double y0, unsigned int n) {

double h{ (t_rng.second - t_rng.first)/n };

double *ts{ new double[n + 1] };

double *ys{ new double[n + 1] };

double *dys{ new double[n + 1] };

ts[0] = t_rng.first;

ys[0] = y0;

dys[0] = f(ts[0], ys[0]);

for (unsigned int k{0}; k < n; ++k) {

ts[k + 1] = ts[0] + h*(k + 1);

ys[k + 1] = ys[k] + h*dys[k];

dys[k + 1] = f(ts[k + 1], ys[k + 1]);

}

return std::make_tuple(ts, ys, dys);

}

Approximating solutions to systems of 1st-order initial-value problems

17

Implementation

• Let’s update it for vector-valued functions:
std::tuple<double *, vector *, vector *> euler(vector f(double t, vector y),

std::pair<double, double> t_rng, vector y0, unsigned int n) {

double h{ (t_rng.second - t_rng.first)/n };

double *ts{ new double[n + 1] };

vector *ys{ new vector[n + 1] };

vector *dys{ new vector[n + 1] };

ts[0] = t_rng.first;

ys[0] = y0;

dys[0] = f(ts[0], ys[0]);

for (unsigned int k{0}; k < n; ++k) {

ts[k + 1] = ts[0] + h*(k + 1);

ys[k + 1] = ys[k] + h*dys[k];

dys[k + 1] = f(ts[k + 1], ys[k + 1]);

}

return std::make_tuple(ts, ys, dys);

}

Approximating solutions to systems of 1st-order initial-value problems

18

Implementation

• All of this worked because for our vector class:

– We defined all possible arithmetic operators on pairs of vectors

– We also defined all possible arithmetic operators for scalar
multiplication

• We can make similar changes to the Dormand-Prince algorithm

– Only one additional trivial change is required for the adaptive
algorithms:

• We must compare two vectors with the norm:

double a{ eps_abs*h/(2.0*norm(y - z)) };

Approximating solutions to systems of 1st-order initial-value problems

19

Implementation

• Recall our problem and solution:

Approximating solutions to systems of 1st-order initial-value problems

20

()() () ()
()() () ()

1

1

2

2

y t y t z t

z t z t y t

= − −

= − +

()

()

0 1

0 2

y

z

=

=

() () ()()

() () ()()

cos 2 2sin 2

2cos 2 sin 2

t

t

y t e t t

z t e t t

−

−

= −

= +

()y t

()z t

Implementation

• The greatest issue is writing down the functions

vector f(double t, vector u) {

return vector{ 2, (double[]){ -t*u(0) - 2.0*u(1),

-u(1) + 2.0*u(0) } };

}

vector{ 2, (double[]){ 1.0, 2.0 } }

Approximating solutions to systems of 1st-order initial-value problems

21

()() () ()
()() () ()

1

1

2

2

y t ty t z t

z t z t y t

= − −

= − +

()

()

0 1

0 2

y

z

=

=

Implementation

• Recall that this last problem did not have a closed-form solution,
however, we can still approximate it

Approximating solutions to systems of 1st-order initial-value problems

22

()() () ()
()() () ()

1

1

2

2

y t ty t z t

z t z t y t

= − −

= − +

()

()

0 1

0 2

y

z

=

=

()y t

()z t

Implementation

• The greatest issue is writing down the functions

vector f(double t, vector u) {

return vector{ 3, (double[]){ 10.0*(u(1) - u(0)),

u(0)*(28.0 - u(2)) - u(1),

u(0)*u(1) - 8.0/3.0*u(2) } };

}

vector{ 3, (double[]){ 1.0, 1.0, 1.0 } }

Approximating solutions to systems of 1st-order initial-value problems

23

() () () ()()
() () () ()() ()

() () () () ()

1

1

1

10

28

8

3

x t y t x t

y t x t z t y t

z t x t y t z t

= −

= − −

= −

()

()

()

0 1

0 1

0 1

x

y

z

=

=

=

Implementation

• Let’s go the opposite direction:
vector f(double t, vector u) {

return vector{ 3, (double[]){ -u(0) - u(1)*u(2) + t*t,

-u(1)*u(2) + 2.5*t,

-u(2) - u(0) + sin(t) } };

}

Approximating solutions to systems of 1st-order initial-value problems

24

()() () () ()1 2x t x t y t z t t= − − +

()() () ()1
2.5y t y t z t t= − +

()() () () ()1
sinz t z t x t t= − − +

Summary

• Following this topic, you now

– Have a deeper appreciation for systems of initial-value problems

– Understand a system of initial-value problems can be converted to
vector form

– Know that this requires essentially no changes to the solvers

• All of the arithmetic seamlessly translates to vector addition or
scalar multiplication

– Have an idea how to formulate such problems

Approximating solutions to systems of 1st-order initial-value problems

25

References

[1] https://en.wikipedia.org/wiki/Initial_value_problem

Approximating solutions to systems of 1st-order initial-value problems

26

Acknowledgments

Zizhou Wang for detecting an error in the indexing on Slide 23.

Approximating solutions to systems of 1st-order initial-value problems

27

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Approximating solutions to systems of 1st-order initial-value problems

28

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Approximating solutions to systems of 1st-order initial-value problems

29

